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Abstract  

This deliverable aims at establishing the basic concepts developed in STAVE that link Vehicle System 
Dynamics to Bifurcation Theory. 

This document is organized as follows.  

Section 1 describes how drivers create Hopf bifurcations, thus linking vehicle-and-driver dynamics to 
Bifurcation Theory. The influence of driver’s ability and common controls like ESP on vehicle stability has 
been assessed. 

Section 2 defines and computes the threshold above which a disturbance cause instability. Floquet theory 
for an early classification of stable and unstable motion is applied.  

Section 3 describes a method to introduce Lyapunov functions into complex vehicle models. Section 3 
introduces a technique developed to make an inner estimate, using Lyapunov functions,  of the region of 
stability of the desired motion. The corresponding paper will be produced later. 

Conclusions in Section 4. 
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1. Vehicle-and-driver dynamics and Bifurcation Theory.   

After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the 
intended motion. Even though this fact is known by any driver, the scientific investigation and testing on 
this phenomenon is just at its very beginning.  

1.1 Any vehicle is made unstable by driver action for a sufficiently high forward velocity  

The first step in our investigation was to identify the origin of vehicle instability. To this end, we coupled 
the simplest vehicle model (Model 1 from Deliverable 1) with the driver model introduced in the same 
document, resulting in a combined vehicle-and-driver system described by the following set of equations: 

 �̇�𝑣 =  
1
𝑚𝑚
�𝐹𝐹𝑦𝑦𝑓𝑓 +  𝐹𝐹𝑦𝑦𝑟𝑟 +  𝐹𝐹� −  𝑢𝑢 𝑟𝑟 

�̇�𝑟 =  
1
𝐽𝐽
�𝑎𝑎 𝐹𝐹𝑦𝑦𝑓𝑓 −  𝑏𝑏 𝐹𝐹𝑦𝑦𝑟𝑟 +  𝑀𝑀� 

�̇�𝛿  =  𝛿𝛿1 
�̇�𝛿1 =  𝛿𝛿2 

 �̇�𝛿2 =
6
𝜏𝜏3
�−𝛿𝛿 − 𝜏𝜏 𝛿𝛿1 −  �

𝜏𝜏2

2
� 𝛿𝛿2 +  𝑘𝑘 𝑒𝑒 +  𝑘𝑘𝑑𝑑�̇�𝑒� 

�̇�𝑦𝐺𝐺 =  𝑣𝑣 +  𝑢𝑢 𝜓𝜓 
�̇�𝜓 =  𝑟𝑟 

where 𝑣𝑣 is the lateral speed, 𝑟𝑟 is the yaw rate, 𝛿𝛿 is the steering angle, 𝑦𝑦𝐺𝐺  is the lateral position, and 𝜓𝜓 is the 
heading angle of the vehicle with respect to the reference path—together defining the path error (see Section 
2 of Deliverable 1). 

𝑒𝑒 = �𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟 − 𝑦𝑦𝑃𝑃� = −𝑦𝑦𝑃𝑃 = 𝑦𝑦𝐺𝐺 − 𝐿𝐿 sin𝜓𝜓 
�̇�𝑒 = ��̇�𝑦𝑟𝑟𝑟𝑟𝑟𝑟 − �̇�𝑦𝑃𝑃� = −�̇�𝑦𝑃𝑃  

since the reference path is assumed to be straight and aligned with the longitudinal axis of the vehicle. 

Parameters 𝑎𝑎 and 𝑏𝑏 denote the distances from the center of mass to the front and rear axles, respectively. 
𝑚𝑚 is the vehicle mass, and 𝐽𝐽 its inertia momentum, while  𝑢𝑢 is the constant forward velocity. The lateral 
tire forces 𝐹𝐹𝑦𝑦𝑓𝑓  and 𝐹𝐹𝑦𝑦𝑟𝑟   (see Section 1 of Deliverable 1) represent the interaction between tires and road, and 
can be computed using the Pacejika magic formula [1] as 

𝐹𝐹𝑦𝑦𝑖𝑖(𝛼𝛼𝑖𝑖) = 𝐷𝐷𝑖𝑖 sin�𝐶𝐶𝑖𝑖 arctan�𝐵𝐵𝑖𝑖α𝑖𝑖 − 𝐸𝐸𝑖𝑖(𝐵𝐵𝑖𝑖α𝑖𝑖 − arctan(𝐵𝐵𝑖𝑖α𝑖𝑖))�� , 𝑖𝑖 = 𝑓𝑓, 𝑟𝑟,

α𝑟𝑟 = δ − �
𝑣𝑣 + 𝑟𝑟𝑎𝑎
𝑢𝑢

� ,α𝑟𝑟 = −�
𝑣𝑣 − 𝑟𝑟𝑏𝑏
𝑢𝑢

� 

The driver model includes a response delay 𝜏𝜏, a feedback gain 𝑘𝑘, and an anticipatory gain 𝑘𝑘𝑑𝑑. External 
disturbances are modeled as force 𝐹𝐹 and torque 𝑀𝑀. 

We analyzed this model by varying system parameters, focusing on the driver's ability to maintain a straight 
trajectory. Mathematically, this corresponds to analyzing the stability of the equilibrium 𝑥𝑥 =
 �𝑣𝑣, 𝑟𝑟, 𝛿𝛿, �̇�𝛿, �̈�𝛿,𝑦𝑦𝐺𝐺 ,𝜓𝜓� =  0. 

To study local stability, the system is linearized around this equilibrium. The resulting linear system is: 

𝛿𝛿�̇�𝑥  =  𝐽𝐽 𝛿𝛿𝑥𝑥, 

where 𝛿𝛿𝑥𝑥 is the state deviation and 𝐽𝐽 is the Jacobian matrix evaluated at the origin, that is 
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where 𝐹𝐹𝑖𝑖 = 𝐵𝐵𝑖𝑖𝐶𝐶𝑖𝑖𝐷𝐷𝑖𝑖 , 𝑖𝑖 = 𝑓𝑓, 𝑟𝑟. The linear analysis shows that at low forward velocities 𝑢𝑢, the system is 
asymptotically stable (i.e., all eigenvalues of 𝐽𝐽 have negative real parts). As 𝑢𝑢 increases, a pair of complex-
conjugate eigenvalues crosses the imaginary axis, indicating the onset of instability through a Hopf 
bifurcation [2]. 
 
It is well known that oversteering vehicles tend to become unstable at high speed, whereas understeering 
vehicles are traditionally considered stable at any speed when the driver is not modeled. Our analysis 
demonstrates that once the driver is included, any vehicle—understeering or oversteering—becomes 
unstable beyond a certain forward velocity [3]. This result provides a rigorous mathematical explanation 
for a widely acknowledged empirical fact: every vehicle becomes unmanageable at high enough speeds 
due to the limitations in driver response. 

1.2 Taxonomy of bifurcations that cause vehicle instability 

The analysis performed allows us to go further: in fact, by examining how the desired mode of operation 
loses its stability properties, we can understand which other system invariants are involved. The scenario 
presented corresponds to a Hopf bifurcation. The analysis of the nonlinear terms shows that, in this 
bifurcation, a limit cycle is involved, which at the moment of the bifurcation collides with the desired 
equilibrium, changing its stability properties. In particular, two scenarios are possible [2]: 

• Subcritical Hopf bifurcation: where an unstable limit cycle collides with the stable equilibrium, 
altering its stability properties (Figure 1, panel a); 

• Supercritical Hopf bifurcation: where a stable limit cycle is born around the equilibrium when it 
becomes unstable (Figure 1, panel b), generating oscillations of increasing amplitude. 

These two scenarios are often classified as catastrophic (subcritical Hopf) and non-catastrophic 
(supercritical Hopf), because as the parameter varies, in the catastrophic case there is no attractor in the 
neighborhood after the bifurcation. Therefore, after the bifurcation, a small perturbation causes a large 
transient that moves the system away from the previously stable operating mode. In the non-catastrophic 
case, an attractor emerges nearby after the bifurcation, so a small perturbation sets the system to operate in 
a mode not too different (small oscillations around the reference trajectory, in our case) from the desired 
one. 
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Figure 1: Bifurcation diagram of the model under analysis. The projection of the invariant (either equilibria 
of limit cycles) as function of vehicle forward velocity on the (𝑣𝑣, 𝑟𝑟) plane are reported in red when unstable, 
in green when stable. 

 

Both cases are possible in our model, as shown in the figure, and the transition from one case to the other 
depends on vehicle and driver parameters. For example, Figure 1 shows that a low driver anticipation 
capacity is typically associated with the subcritical Hopf bifurcation, while a driver with higher anticipation 
capacity will encounter a supercritical Hopf bifurcation. 

It is interesting to note that since both cases are possible, the system can transition from one to the other as 
parameters vary: the transition from subcritical to supercritical Hopf is itself a bifurcation, called a 
codimension-2 bifurcation, known as the Bautin bifurcation or Generalized Hopf bifurcation [2]. This 
bifurcation also involves a fold bifurcation of limit cycles. This tells us that even in the best case (the non-
catastrophic one), the stable limit cycle generated as forward velocity increases will collide and disappear 
with a saddle limit cycle: thus, for velocities at which the vehicle-plus-driver system can still follow the 
reference trajectory (i.e., forward velocities lower than the Hopf bifurcation velocity), a saddle limit cycle 
is present. 

The presence of an unstable limit cycle delimiting the basin of attraction of the desired motion has been 
analyzed using the driving simulator facility available at Politecnico di Milano (see Figure 2) [4]. 

Figure 3 reports the 𝑣𝑣 and 𝑟𝑟 measurements for four trajectories (obtained with two different vehicle setups) 
recorded in the driving simulator: two of them (green) correspond to cases where the driver was able to 
recover straight motion, and two (red) led to the end of the simulation, resulting from different initial 
perturbations. As one can see, the trajectories describe a cyclical path before converging or diverging. 
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Figure 2: Dynamic driving simulator of the Politecnico di Milano - www.drismi.polimi.it 

 
Figure 3: Projection of two trajectories in the (𝑣𝑣, 𝑟𝑟)-plane, obtained with the complex vehicle model 
controlled by a human driver at the driving simulator for the oversteering (left panels) and the 
understeering (right panels) vehicle configuration (see Deliverable 1). Forward speed 𝑢𝑢 = 90 km/h. 

http://www.drismi.polimi.it/
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1.3 Impact of drivers driving ability on vehicle instability 

As previously discussed, the main cause of instability lies in the driver's reaction time and response 
behavior. Using bifurcation analysis, we investigated how the instability threshold—that is, the critical 
velocity at which a Hopf bifurcation occurs—as well as the type of Hopf bifurcation, change as a function 
of the driver’s parameters: the reactivity 𝑘𝑘𝑝𝑝, the anticipation ability 𝑘𝑘𝑑𝑑, and the response delay 𝜏𝜏. The results 
are illustrated in Figure 4. 

 

Figure 4: Hopf bifurcation curves for the model under analysis, in red or green when subcritical or 
supercritical, respectively. 

The Hopf bifurcation curves shown in panel (a) clearly illustrate both the transition between subcritical 
and supercritical regimes (a Generalized Hopf or Bautin bifurcation, labeled “GH”) and the existence 
of an optimal value of 𝑘𝑘𝑑𝑑, which depends on 𝑘𝑘𝑝𝑝, that maximizes the critical velocity (i.e., the steady-state 
becomes unstable when crossing the Hopf curve from left to right). Lower values of 𝑘𝑘𝑝𝑝 correspond to higher 
critical velocities. 

In panel (b), the Hopf curve is shown in the (𝑢𝑢, 𝑘𝑘𝑝𝑝)-plane for three different values of the steering delay 𝜏𝜏. 
As 𝜏𝜏  decreases, the critical velocity increases dramatically, and the Hopf bifurcation becomes 
supercritical for any given value of 𝒌𝒌𝒑𝒑. When 𝜏𝜏 → 0, the Hopf bifurcation disappears altogether: the 
delay in the application of the steering command is the primary cause for the generation of limit 
cycles. 

The unstable cycle that characterizes the perturbed rectilinear motion of the vehicle-and-driver system is 
of the saddle type: in phase space, trajectories are temporarily attracted to the cycle, and then repelled—
either towards the stable equilibrium or towards a spin condition. 

1.4 Impact of control systems on vehicle instability 

The control system architecture, schematized in Figure 5, and the controller dynamics has been derived in 
Deliverable 1 and are here briefly reported: 
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Figure 5: Control system architecture. 

 

The reference generator module has been improved by adding saturations to the maximum imposable 
reference yaw rate  �̅�𝑟, smoothed out for numerical reasons through the use of a hyperbolic tangent: 

�̅�𝑟 = tanh �
𝑢𝑢 𝛿𝛿

𝑙𝑙 + 𝑘𝑘𝑢𝑢𝑢𝑢𝑢𝑢2
∙

1
𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚

� 𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚; 

𝑟𝑟𝑚𝑚𝑚𝑚𝑚𝑚 =
𝑔𝑔
𝑢𝑢
𝑝𝑝. 

Where 𝑝𝑝 is a tuneable parameter that can be used to select a desired maximum reference yaw rate. 

To determine the effects of the controller on the stability of the vehicle, a bifurcation analysis has been 
conducted over the simplified 2DOF single-track model presented in Deliverable 1, with the driver module 
removed and replaced by a time invariant steering angle 𝛿𝛿, reported in Figure 6. 

 
Figure 6: Bifurcation diagram in (𝛿𝛿, 𝜇𝜇) with a fixed longitudinal velocity of u = 90 Km/h. Only half of the bifurcations are plotted 

for clarity purposes, the other half is symmetric with respect to the x-axis. 

The causes of instability of the vehicle mounting the oversteering tires setup has been carefully explored, 
deriving an analytical way to define the minimum control gain value of the controller that guarantees 
stability 𝜇𝜇𝑚𝑚𝑖𝑖𝑚𝑚. It is also shown a diminishing effect on the efficiency of the controller itself, leading to an 
analytical way to determine upper bound for the value of the control gain 𝜇𝜇𝑚𝑚𝑚𝑚𝑚𝑚 .
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2 Definition and computation of the threshold above which a disturbance cause instability 

2.1 Region of Attraction (RoA) and the role of the saddle limit cycle 

We are now ready to mathematically explain why there are always disturbances (such as a severe lane 
change, a wind gust, etc.) that the driver is unable to recover from and restore the vehicle to the reference 
trajectory: the desired mode of operation is not globally stable, but instead possesses a basin of attraction, 
due to the presence of a saddle-type limit cycle. 

Mathematically speaking, given a certain forward velocity, let us consider a disturbance acting on the 
vehicle body. If we model this disturbance as an impulse applied to the body via a force 𝐹𝐹 and/or a torque 
𝑀𝑀, the result is an initial state with nonzero lateral velocity 𝑣𝑣 and yaw rate 𝑟𝑟, while all the other states 
remain at 0. 

This can be justified as follows: if the external inputs 𝐹𝐹 and 𝑀𝑀 are modeled as Dirac delta functions, then 
the instantaneous values of �̇�𝑣 and �̇�𝑟 at the time of the impulse are different from 0. This is due to the specific 
structure of the governing equations, where 𝐹𝐹 and 𝑀𝑀 appear only in the differential equations for �̇�𝑣 and �̇�𝑟. 

The saddle limit cycles shown in Figure 1 therefore cause the existence of a basin of attraction, as they 
partitions the state space into two non-negligible regions: one containing trajectories that converge to the 
desired motion, and the other containing trajectories that diverge—delimited by the (N−1)-dimensional 
surface formed by trajectories that converge to the saddle limit cycle itself. Importantly, as the amplitude 
of the limit cycle grows as we diminish the forward speed, the initial conditions that lead to instability 
are larger at low forward speeds, which aligns with physical intuition: larger deviations correspond to 
stronger disturbances. 

The ℝ𝑁𝑁−1 dimensional surface containing all the initial conditions that converge to the saddle limit cycle 
is called the stable manifold of the saddle limit cycle, and it has measure zero in ℝ𝑁𝑁. Initial conditions 
on one side of this manifold lead to recovery of the desired behavior, while those on the other side evolve 
away from it—and generate what is commonly interpreted as an unstable motion. 

2.2 Formal definition of the limit of stability 

Since disturbances affect only the initial conditions of the lateral velocity 𝑣𝑣 and yaw rate 𝑟𝑟—as these are 
the only state variables they can instantly modify—the intersection of the stable manifold of the saddle limit 
cycle with the velocity–yaw-rate plane becomes particularly relevant. We refer to this intersection as 
ISMaVeR (Intersection of the Stable Manifold with the Velocity and Roll plane) [6]. 
The points inside ISMaVeR represent all initial conditions with 𝑣𝑣 ≠  0, 𝑟𝑟 ≠  0, and all other state variables 
set to zero—i.e., all initial conditions that can result from a disturbance—that lead to convergence towards 
the desired mode of operation. Conversely, the points outside ISMaVeR lead to diverging trajectories. In 
other words, ISMaVeR defines the set of disturbances that the vehicle-and-driver system is able to handle 
and recover from. Therefore, the area of ISMaVeR can be interpreted as a measure of the system’s 
robustness to external disturbances. 
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In Figure , we show the projection of the 6D stable manifold of the saddle limit cycle onto a 3D subspace. 
The intersections with the coordinate planes are shown in blue, while the black closed curve represents the 
projection of the limit cycle on each plane for the OV vehicle configuration (see Deliverable 1 for model 
parameters). The closed blue curves in the (𝑣𝑣, 𝑟𝑟)-plane are what we refer to as ISMaVeR, and they define 
the basin of attraction of the controlled equilibrium after a disturbance (i.e. under the assumption 𝜓𝜓(0)  =
 𝑦𝑦𝐺𝐺(0)  =  𝛿𝛿(0)  =  𝛿𝛿₁(0)  =  𝛿𝛿₂(0)  =  0). On the right side of the figure, the same ISMaVeR curve is 
displayed, overlaid with a scatter plot of green and red dots representing initial conditions of the full vehicle 
model driven by a human driver in the driving simulator. The green dots indicate successful recovery (the 
driver returns to the reference trajectory), while the red dots indicate failure (the driver cannot recover). 
This experimental validation confirms that the results obtained via mathematical analysis of the model have 
quantitative predictive power. 

2.3 Floquet theory for early detection of unstable motions [7] 

Having shown that the possible loss of vehicle control is directly linked to the existence of a saddle-type 
limit cycle, we have proposed a novel methodology for vehicle stability sensing based on the mathematical 
analysis of trajectories near the saddle cycle. The goal is to define a precise criterion to recognize—
immediately after a disturbance—whether the driver will ultimately be able to recover the steady-state 
condition. To explain the rationale behind the method, we first present an example of a two-dimensional 
system, with a stable equilibrium and a saddle, whose phase portrait is shown in Figure . The system has 
two equilibria: a saddle point 𝑧𝑧0 and a stable node 𝑧𝑧𝐸𝐸. The stable manifold of the saddle divides the phase 
plane into two distinct regions: initial conditions on one side lead to convergence toward 𝑧𝑧𝐸𝐸, while those 
on the other side diverge. The geometry of the stable and unstable manifolds is closely related to the 

(A) 

Figure 7: (A) Projection of the saddle-type limit cycle (black line) onto the (𝜓𝜓, 𝑣𝑣, 𝑟𝑟) subspace at 𝑢𝑢 = 90 𝑘𝑘𝑚𝑚/ℎ. The red surface is 
the projection on the 3D subspace of the 6D stable manifold of the limit cycle, whose intersection with each plane is reported in 
blue, while the black closed curve is the projection of the limit cycle on each plane. The closed blue line on the (𝑣𝑣, 𝑟𝑟) plane is called 
ISMaVeR and define the RoA of the desired behavior. (B) Comparison between the ISMaVeR computed with the model and the 
smallest initial conditions at the driving simulator which cause instability. Dots refer to initial conditions of the complex vehicle 
model driven -at the driving simulator- by a human driver. The dots are green if the driver can return to the desired path after the 
disturbance, red otherwise. 
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eigenvectors of the system linearized at the saddle. These eigenvectors, denoted 𝑣𝑣𝑢𝑢 (stable) and 𝑣𝑣𝑢𝑢 
(unstable), are tangent to their respective manifolds at 𝑧𝑧0, and define a local basis of the phase space. 

Given any state 𝑧𝑧̅, its relative position with respect to the saddle can be assessed by expressing the deviation 
𝜉𝜉 =  𝑧𝑧̅  −  𝑧𝑧₀ in the eigenbasis: 

𝜉𝜉 =  𝑐𝑐𝑢𝑢 𝑣𝑣𝑢𝑢  +  𝑐𝑐𝑢𝑢 𝑣𝑣𝑢𝑢 

The sign of the coefficient 𝑐𝑐𝑢𝑢 determines on which side of the stable manifold the point lies. If 𝑐𝑐𝑢𝑢  <  0, the 
trajectory starting at 𝑧𝑧̅ is expected to diverge, lying on the 'wrong' side of the manifold.  

This reasoning can be extended for the analysis of the basin of attraction of an equilibrium in ℝ𝑁𝑁 in the 
case where the basin of attraction is delimited by the ℝ𝑁𝑁−1-stable manifold of a saddle limit cycle, as in 
the common case of a cycle emerging from a subcritical Hopf bifurcation. To make the idea more intuitive, 
we make this extension in a 3D example, assuming therefore that the stable and unstable manifolds of the 
saddle limit cycle are 2D. In this case, the situation is the one reported in Figure .  

As for the previous case, the saddle limit cycle is at the intersection of its stable and unstable manifolds, 
and one side of the unstable manifold converge to the equilibrium 𝑧𝑧𝐸𝐸. For a point 𝑧𝑧̅ we can therefore 
compute the distance 𝜉𝜉 from a suitable point of the saddle limit cycle, and therefore express it in the 
coordinate space of the stable and unstable manifolds. As for the previous case, to compute them we have 
to linearize the motion around the limit cycle: this can be done using Floquet theory by computing the so 
called limit cycle monodromy matrix, and use its eigenvectors computed in 𝑧𝑧0 to express  

𝜉𝜉 = �𝑐𝑐𝑖𝑖𝑣𝑣𝑖𝑖

𝑁𝑁

𝑖𝑖=1

 

where in the summation, to cope with the example in the figure, the three vectors needed to express 𝜉𝜉 are 
the red and green vectors 𝑣𝑣𝑢𝑢 and 𝑣𝑣𝑢𝑢, that are associated to the unstable eigenvalue 𝑘𝑘𝑢𝑢 and the stable 
eigenvalue 𝑘𝑘𝑢𝑢 the monodromy matrix respectively (the eigenvalue of the monodromy matrix are called 
Floquet multipliers) of, together with the vector tangent to the limit cycle in 𝑧𝑧0, that is the eigenvector of 
the monodromy matrix associated to the Floquet multiplier 1. 

Figure 8: Phase portrait of a 2D system in the neighborhood of a saddle equilibrium 𝑧𝑧0. The eigenvectors of the system linearized 
at the saddle are highlighted (𝑣𝑣𝑢𝑢: stable, 𝑣𝑣𝑢𝑢: unstable); they are tangent to the corresponding manifolds at the saddle. The basin 
of attraction of the stable node 𝑧𝑧𝐸𝐸, shaded, is delimited by the stable manifold of the saddle (thicker trajectory): a trajectory from 
any initial state 𝑧𝑧̅ converges to 𝑧𝑧𝐸𝐸 only if it is on the left side of the stable manifold. 
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As before, the points that have negative component along the unstable direction, i.e. 𝑐𝑐𝑢𝑢 < 0 typically 
converges to the equilibrium 𝑧𝑧𝐸𝐸, going elsewhere otherwise. We call this stability criterion Degree of 
Stability criterion (DoS criterion). 

Note that the criterion is based on linearization, and therefore make sense to apply it only when we are in 
the neighborhood of the saddle. Moreover, we need an heuristic to select the point 𝑧𝑧0 of the limit cycle on 
which compute the monodromy matrix.  

2.3.1 Applicability of the DoS criterion 

The trajectory of car-and-driver during a maneuver is often not close to the limit cycle. If the system is far 
from the Hopf bifurcation, small disturbances may not bring it near the cycle. On the contrary, large 
disturbances may cause the driver to lose control before the system feels the influence of the cycle. Even 
when the trajectory belongs to the stable manifold, some time is needed to approach the cycle. We therefore 
introduce a rule to detect when the system is influenced by the cycle, so that the DoS criterion can be 
applied meaningfully. 

We define a sliding window of length 𝑙𝑙, storing the dot product 𝐷𝐷𝐷𝐷�𝑧𝑧0̅�𝑡𝑡𝑗𝑗�� between the vector field at 
𝑧𝑧0̅�𝑡𝑡𝑗𝑗� and the one at 𝑧𝑧0 and the distance 𝐷𝐷�𝑧𝑧0̅�𝑡𝑡𝑗𝑗�� = �𝑧𝑧0̅�𝑡𝑡𝑗𝑗� − 𝑧𝑧0� computed at the last 𝑙𝑙 time steps. The 
criterion is applied only if the following holds for all 𝑗𝑗 = 1, . . . , 𝑙𝑙: 

𝐷𝐷𝐷𝐷�𝑧𝑧0̅�𝑡𝑡𝑗𝑗�� >  𝐷𝐷𝐷𝐷𝑡𝑡ℎ𝑟𝑟   

𝐷𝐷�𝑧𝑧0̅�𝑡𝑡𝑗𝑗�� <  𝐷𝐷�𝑡𝑡ℎ𝑟𝑟 

Here, 𝐷𝐷𝑡𝑡ℎ𝑟𝑟 is a percentage of the limit cycle amplitude that guarantees closeness, and 𝐷𝐷𝐷𝐷𝑡𝑡ℎ𝑟𝑟 ensures 
collinearity. Including both metrics allows the criterion to apply in a wider range of conditions.. 

𝑧𝑧𝐸𝐸 

𝑧𝑧̅ 

𝑧𝑧0 

𝑣𝑣𝑢𝑢 𝑣𝑣𝑢𝑢 
𝑐𝑐𝑢𝑢 

𝑐𝑐𝑢𝑢 

𝑥𝑥1 

𝑥𝑥3 

𝑥𝑥2 

𝜉𝜉 

Figure 9: Phase portrait of a 3D system in the neighborhood of a saddle limit cycle. The stable and unstable manifolds of the limit 
cycle are shown in green and red, respectively. System trajectories that spiral along the stable manifold converge to the limit 
cycle, while those that spiral along the unstable manifold converge to the limit cycle backward in time. 
At a point 𝑧𝑧0 on the limit cycle, the eigenvectors of the monodromy matrix computed at that point are displayed: 𝑣𝑣𝑢𝑢 (stable) and 
𝑣𝑣𝑢𝑢 (unstable). These vectors are tangent to the corresponding manifolds. The Region of Attraction of the stable equilibrium 𝑧𝑧𝐸𝐸 is 
bounded by the stable manifold of the saddle limit cycle: a trajectory starting from an arbitrary initial condition 𝑧𝑧̅ converges to 
𝑧𝑧𝐸𝐸 only if it lies within the stable manifold of the limit cycle. 
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2.3.2 Selection of the point 𝑧𝑧0 on the limit cycle 

To select the point 𝑧𝑧0 of the cycle to compute the monodromy matrix, we solve the following constrained 
maximization problem: 

𝑚𝑚𝑎𝑎𝑥𝑥𝑖𝑖𝑚𝑚𝑖𝑖𝑧𝑧𝑒𝑒: (1 −  𝑤𝑤)𝐷𝐷𝐷𝐷[𝑧𝑧0̅] +  𝑤𝑤 �
𝐷𝐷[𝑧𝑧0̅]
𝐷𝐷𝑚𝑚𝑖𝑖𝑚𝑚

�
−1

𝑠𝑠𝑢𝑢𝑏𝑏𝑗𝑗𝑒𝑒𝑐𝑐𝑡𝑡 𝑡𝑡𝑡𝑡: 𝐷𝐷𝐷𝐷[𝑧𝑧0̅]  >  0 

with: 

𝐷𝐷𝐷𝐷[𝑧𝑧0̅] =
(�̇�𝑧0 ⋅  �̇�𝑧)

�|�̇�𝑧0|� ·  �|�̇�𝑧|�
, 𝐷𝐷[𝑧𝑧0̅] =  �|𝑧𝑧 −  𝑧𝑧0|�, 𝐷𝐷𝑚𝑚𝑖𝑖𝑚𝑚 = min�𝐷𝐷�𝑧𝑧0𝑖𝑖 � 𝑠𝑠𝑢𝑢𝑐𝑐ℎ 𝑡𝑡ℎ𝑎𝑎𝑡𝑡 𝐷𝐷𝐷𝐷�𝑧𝑧0𝑖𝑖 � >  0 �. 

2.3.3 Practical application 

In Figure , we show two car-and-driver responses to a disturbance during straight motion at 𝑢𝑢 = 120 
km/h, simulating a wind gust acting on lateral speed 𝑣𝑣. 

 
Figure 10: Application of the DoS criterion. (a) the disturbance (𝑟𝑟, 𝑣𝑣)  =  �0 𝑟𝑟𝑚𝑚𝑑𝑑

𝑢𝑢
, 1.8𝑚𝑚

𝑢𝑢
� excites a 

controlled straight motion: the system eventually returns to the steady-state condition 𝑧𝑧𝐸𝐸. The criterion 
correctly predicts the outcome of the maneuver after 𝑡𝑡 = 0.7𝑠𝑠 from the application of the disturbance, with 
stability index 𝑐𝑐𝑢𝑢𝑒𝑒𝑘𝑘𝑢𝑢  =  0.087. (b) the disturbance (𝑟𝑟, 𝑣𝑣)  =  �0 𝑟𝑟𝑚𝑚𝑑𝑑

𝑢𝑢
, 1.95𝑚𝑚

𝑢𝑢
� excites an uncontrolled 

motion: the vehicle will spin out. The criterion correctly predicts the outcome of the maneuver after 𝑡𝑡 =
0.7𝑠𝑠, with stability index 𝑐𝑐𝑢𝑢𝑒𝑒𝑘𝑘𝑢𝑢  =  −0.1. (c) trajectory of the vehicle's centre of mass (the reference path 
is represented as a dotted black line). (d) time history of the vehicle side-slip angle 𝛽𝛽. 

In panel (a) the driver successfully restores the original state. In panel (b) control is lost. In both cases, the 
DoS criterion predicts the outcome shortly after the disturbance, t=0.7s for straight path, when the side slip 
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angle 𝛽𝛽 is very small and therefore it is easy to apply a control to react to the disturbance. In panel (d), is 
reported the common threshold for ESP activation 𝛽𝛽 > 6°, that would activate control after 7.2s. 

2.3.4 Interpretation of the stability index 

The coefficient 𝑐𝑐𝑢𝑢𝑒𝑒𝑘𝑘𝑢𝑢 serves as a real-time stability index, which can assist control systems or human 
drivers to adapt their strategy. This quantitative indicator offers an important advantage over traditional 
instability detection techniques. Even when maneuvers are technically "recovered", they may feature strong 
oscillations and thus be considered unsafe. This is captured by small values of 𝑐𝑐𝑢𝑢𝑒𝑒𝑘𝑘𝑢𝑢, indicating proximity 
to the saddle manifold and thus marginal stability. 
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3 Method to introduce Lyapunov functions into complex vehicle models 

A mathematical tool that, thanks to the La Salle principle, allows a formal estimation of regions all 
contained in the stability region, also called in this context Region of Attraction (ROA) is the Lyapunov 
function. For the model we presented, we have proposed a kinetic energy-based Lyapunov function, with 
the idea that if a disturbance is absorbed by the system the kinetic energy of the system vanishes, while if 
is cause instability it diverges.  

3.1 Formal definition of a Lyapunov function for vehicle dynamics 

To analyze the response of a vehicle-and-driver system to disturbances, we introduce a Lyapunov function 
V whose time derivative is defined as: 

�̇�𝑉  =  −(𝛥𝛥𝐸𝐸ₖ +  𝐸𝐸ₛ), 
where 𝛥𝛥𝐸𝐸ₖ is the variation in kinetic energy due to the vehicle’s motion, and 𝐸𝐸ₛ is the energy associated 
with the steering action. 
The kinetic energy variation, derived using König’s theorem, includes both translational and rotational 
components, and is expressed as: 

𝛥𝛥𝐸𝐸ₖ =  (1/2) 𝑚𝑚 𝑣𝑣² +  (1/2) 𝐽𝐽 𝑟𝑟², 
assuming constant forward velocity u and an initial steady-state condition 𝑣𝑣(0)  =  𝑟𝑟(0)  =  0. 
 
Note that 𝛥𝛥𝐸𝐸ₖ is the result of the work done by all active forces acting on the system: 

𝛥𝛥𝐸𝐸ₖ =  � 𝐹𝐹𝑦𝑦𝑓𝑓
𝑦𝑦𝑓𝑓

0
 𝑑𝑑𝑦𝑦𝑟𝑟  +  � 𝐹𝐹𝑦𝑦𝑟𝑟

𝑦𝑦𝑟𝑟

0
 𝑑𝑑𝑦𝑦𝑟𝑟  +  � 𝑚𝑚𝑣𝑣𝑟𝑟 𝑑𝑑𝑡𝑡

𝑡𝑡

0
  +  � 𝐹𝐹 𝑑𝑑𝑦𝑦𝐺𝐺

𝑦𝑦𝐺𝐺

0
  +  � 𝑀𝑀 𝑑𝑑𝜓𝜓

𝜑𝜑

0
, 

where: 
- 𝐹𝐹𝑦𝑦𝑓𝑓 ,𝐹𝐹𝑦𝑦𝑟𝑟  are lateral tire forces at the front and rear axles; 
- 𝑚𝑚𝑣𝑣𝑟𝑟 is the inertial longitudinal force required to maintain constant forward velocity; 
-  𝐹𝐹 and 𝑀𝑀 are external disturbance force and moment applied to the vehicle body; 

and therefore it contains all the information on all of the acting forces and all of the state variables, and is 
thus a meaningful quantity. 
The energy associated with the driver’s steering action 𝐸𝐸ₛ accounts for internal elastic, viscous, and inertial 
torques: 

𝐸𝐸ₛ =  � 𝜉𝜉 𝛿𝛿 𝑑𝑑𝛿𝛿
𝛿𝛿

0
  +  � 𝜉𝜉 𝜏𝜏 𝛿𝛿 𝑑𝑑𝛿𝛿

𝛿𝛿

0
 +  � 𝜉𝜉 𝜏𝜏2𝛿𝛿 𝑑𝑑𝛿𝛿

𝛿𝛿

0
, 

but is found to be several orders of magnitude smaller than 𝛥𝛥𝐸𝐸ₖ, and thus negligible for the purposes of 
Lyapunov analysis. 
The resulting expression for the Lyapunov function derivative becomes: 

�̇�𝑉  ≈  −((1/2) 𝑚𝑚 𝑣𝑣² +  (1/2) 𝐽𝐽 𝑟𝑟²), 
which is negative definite for all 𝑣𝑣, 𝑟𝑟 ≠  0. 
By applying the fundamental theorem of integral calculus we therefore get 

𝑉𝑉(𝑡𝑡) − 𝑉𝑉(𝑥𝑥(0))  ≈  � −�
1
2

 𝑚𝑚 𝑣𝑣2 +  
1
2

 𝐽𝐽 𝑟𝑟2� 𝑑𝑑𝑡𝑡
𝑡𝑡

0
 

and therefore, if we are in the ROA of 0 (and therefore \𝑙𝑙𝑖𝑖𝑚𝑚𝑡𝑡→∞𝑉𝑉(𝑡𝑡) = 0) the Lyapunov function is  

𝑉𝑉�𝑥𝑥(0)� ≈  � �
1
2

 𝑚𝑚 𝑣𝑣2 +  
1
2

 𝐽𝐽 𝑟𝑟2�
𝑡𝑡

0
𝑑𝑑𝑡𝑡 

This leads to a necessary and sufficient condition for post-disturbance recovery: 
lim
𝑡𝑡→∞

 𝛥𝛥𝐸𝐸ₖ(𝑡𝑡) =  0 ⇔ lim
𝑡𝑡→∞

𝑣𝑣(𝑡𝑡)  =  𝑟𝑟(𝑡𝑡)  =  0 . 
Although theoretically rigorous, this formulation requires full knowledge of the system trajectory to 
compute 𝑉𝑉(𝑥𝑥), making it unsuitable for a priori estimation of the ROA. For this reason, the next section 
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introduces an SOS-based approach for constructing a Lyapunov function that enables ROA estimation via 
polynomial optimization. 

3.2 Sum Of Squares (SOS) methods to inner approximate of the stability region 

Given a dynamic system �̇�𝑥 = 𝑓𝑓(𝑥𝑥) with a fixed point at the origin, a Lyapunov function 𝑉𝑉(𝑥𝑥) is a scalar, 
energy-like scalar function that satisfies the following properties: 𝑉𝑉(𝑥𝑥) is positive definite, and its Lie 
derivative along the system dynamics �̇�𝑉(𝑥𝑥) = 𝜕𝜕𝜕𝜕(𝑚𝑚)

𝜕𝜕𝑚𝑚
𝑓𝑓(𝑥𝑥) is a negative semi-definite function. Finding a 

Lyapunov function proves that the fixed point at the origin is a stable equilibrium (Lyapunov’s Direct 
Method). If �̇�𝑉(𝑥𝑥) is negative definite (a stricter condition), this further implies asymptotic stability. While 
the size of the region where these definiteness conditions hold is not relevant to characterize the equilibrium, 
it is essential to estimate the ROA.  
 
A sublevel set 𝑆𝑆 = {𝑥𝑥:  𝑉𝑉(𝑥𝑥) < 𝜌𝜌} on which �̇�𝑉(𝑥𝑥) ≤ 0 is an invariant set for the system, i.e., trajectories 
starting from 𝑥𝑥 ∈ 𝑆𝑆 always remain inside 𝑆𝑆 . According to LaSalle’s theorem, these trajectories converge 
to the largest invariant subset of 𝑆𝑆  where �̇�𝑉(𝑥𝑥) = 0. If that subset consists of the origin alone, then 𝑆𝑆  is an 
inner approximation of its ROA. The practical challenge is to find a Lyapunov function that leads to the 
largest possible sublevel set 𝑆𝑆  satisfying these properties. 
 
To address this, sum-of-squares (SOS) methods provide a computational framework for constructing 
Lyapunov functions and estimating ROA in systems with polynomial dynamics [8]. A polynomial is SOS 
if it can be written as the sum of the squares of other polynomials. This guarantees that it is globally positive 
semi-definite. The key advantage is the SOS condition can be enforced efficiently as convex constraint in 
semidefinite programs (SDP).  
 
We first illustrate the approach on a benchmark system, the time-reversed Van der Pol oscillator. This 
system already has polynomial dynamics and has an asymptotically stable equilibrium at the origin. Its 
ROA is known and corresponds with the region within the unstable limit cycle. Our aim is to efficiently 
approximate the ROA as a level set of a polynomial Lyapunov function. Several software packages are 
available to solve SOS problems; we utilized Drake Python toolbox developed at MIT with Mosek solver. 
 
First, we compute a polynomial Lyapunov function 𝑉𝑉(𝑥𝑥) of fixed degree for e linearized system around the 
origin. To achieve this, it is sufficient to solve a feasibility SDP problem with SOS constraints 𝑉𝑉(𝑥𝑥) and on 
−𝑉𝑉𝑙𝑙𝑙𝑙𝑚𝑚̇ (𝑥𝑥) = −𝜕𝜕𝜕𝜕(𝑚𝑚)

𝜕𝜕𝑚𝑚
𝜕𝜕𝑟𝑟(𝑚𝑚)
𝜕𝜕𝑚𝑚

𝑥𝑥. Additional linear constraints as 𝑉𝑉(0) = 0 are required for positive definiteness. 
The obtained Lyapunov function is the starting point for the following three step iterative procedure we 
propose. 

1. Given a Lyapunov function 𝑉𝑉(𝑥𝑥), we find the maximum level value 𝜌𝜌 for which the corresponding 
level set is within the region where �̇�𝑉(𝑥𝑥) < 0 (fig. 1a). This step is based on the S-procedure, 
which introduces a polynomial multiplier 𝜆𝜆(𝑥𝑥) to prove the region inclusions.  

2. Given the Lyapunov level set found in step 1, we find the largest ellipse 𝑥𝑥𝑇𝑇𝐷𝐷𝑥𝑥 = 1 within the level 
set (fig. 1b). This step is also based on the S-procedure and introduces a second polynomial 
multiplier 𝜇𝜇(𝑥𝑥). 

3. Given the two multipliers found in steps 1 and 2, we search for a new Lyapunov function by 
maximizing the area of the ellipse contained within the Lyapunov level set. (fig. 1c) Formally, the 
constraints of this SDP problem are the same of the previous steps, but now the multipliers are 
fixed, while the coefficients of the Lyapunov function 𝑉𝑉(𝑥𝑥) and the inner ellipse matrix 𝐷𝐷  are 
decision variables. 
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Figure 11: Steps of the procedure 

By adopting the described procedure with a 6-th degree Lyapunov function, it is possible to obtain a tight 
approximation of the time-reversed Van der Pol ROA in only 7 iterations. The result is shown in Figure 11. 
The result is shown in the left panel of Figure 12. 

An even more compelling aspect concerns the determination of a subset of the ROA for which it is 
guaranteed that all trajectories starting from within remain inside prescribed bounds throughout their 
evolution. By incorporating such requirements as additional SOS constraints in the previous optimization 
steps, we can compute an inner approximation of the ROA that is also an invariant set and that complies 
with the specified bound constraints. This approach is particularly relevant in safety-critical applications, 
where constraints on the state variables must be always satisfied and not only asymptotically. An illustrative 
example is reported in the right panel of Figure 12 for the time-reversed Van der Pol system, where the 
constraint 𝑥𝑥12 ≤ 1 must be satisfied throughout the trajectory. 

 

Figure 12: RoA approximation with a 6-th degree Lyapunov function without (left panel) and with (right panel) state constraints 

The main challenges in applying the described procedure to vehicle-with-driver systems are the following: 

• the need for a polynomial approximation of the system dynamics 
• a larger number of state variables, typically greater than six 

Concerning the first point, the primary source of non-polynomial nonlinearity lies in the tire constitutive 
equations. Even simplified versions of the well-known Magic Formula require a high-degree polynomial 
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for accurate fitting. Both the degree of the approximating polynomial dynamics and the number of state 
variables heavily affect the size of the resulting Semidefinite Programming (SDP) problems, since the 
decision variables correspond to the coefficients of the SOS polynomial to be identified. A polynomial of 
degree 𝑑𝑑 in 𝑚𝑚 variables may contain up to (𝑚𝑚+𝑑𝑑)!

𝑚𝑚! 𝑑𝑑!
 monomials, leading to a combinatorial growth in 

complexity. 

To address this issue, one may leverage state constraints to restrict the dynamics within a meaningful 
operating range. For example, imposing an upper bound on the magnitude of tire slip angles serves a 
twofold purpose: it ensures that the system evolves within a physically plausible region, and at the same 
time it enables a lower-degree polynomial approximation of the tire behavior, such as a cubic fit, within 
that region—thus avoiding the saturation zones.  

The application of the described methods to vehicle-with-driver models is currently under development. 
Preliminary results are promising and will be presented in future contributions. 
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3.Path tracking for motorsport and road vehicles 

Traditional planning methods in high-performance racing contexts often operate at the edge of physical 
constraints (e.g., tire grip or track limits) but typically neglect the explicit modeling of disturbances or 
uncertainties [9]. As a result, even small deviations during execution can lead to constraint violations and 
unsafe behavior. Our work focuses on enhancing trajectory planning for motorsport vehicles by 
incorporating uncertainty directly into the planning stage, aiming to achieve both minimum lap time and 
probabilistic safety guarantees. 

The mathematical framework is built upon a nonlinear stochastic dynamic model of a race vehicle. The 
nominal vehicle dynamics is described using a single-track model with nonlinear tire characteristics, with 
longitudinal force and steering angle as control inputs 𝒖𝒖(𝑡𝑡). To model real-world uncertainties (such as 
sensor noise or unmodeled dynamics), we add a noise term 𝒘𝒘(𝑡𝑡) to the dynamics. 

�̇�𝒙(𝑡𝑡) = 𝑓𝑓�𝒙𝒙(𝑡𝑡),𝒖𝒖(𝑡𝑡)� + 𝒘𝒘(𝑡𝑡) 

The vehicle state 𝒙𝒙(𝑡𝑡) is modeled as a Gaußian random variable characterized by a time-varying mean 
𝝁𝝁(𝑡𝑡) and covariance matrix 𝑷𝑷(𝑡𝑡). The evolution of the mean follows the standard deterministic dynamics, 
while the covariance evolves through a Lyapunov differential equation, which depends on the system's 
Jacobian evaluated along the mean trajectory: 

�̇�𝝁(𝑡𝑡) = 𝑓𝑓�𝝁𝝁(𝑡𝑡),𝒖𝒖(𝑡𝑡)� 

�̇�𝑷(𝑡𝑡) = 𝑨𝑨(𝑡𝑡) 𝑷𝑷(𝑡𝑡) + 𝑷𝑷(𝑡𝑡) 𝑨𝑨𝑇𝑇(𝑡𝑡) + 𝑸𝑸(𝑡𝑡) 

where 𝑸𝑸(𝑡𝑡) is the covariance matrix associated with the noise 𝒘𝒘(𝑡𝑡). 

This formulation enables the use of probabilistic constraints [10]; each system constraint (e.g., tire force 
limits or track boundaries) is reformulated by introducing a back-off term, based on a linearization of the 
constraint. This term depends on the covariance 𝑷𝑷 and the desired confidence level to fulfill the 
requirements. This ensures that the constraint is satisfied with a user-defined probability (e.g., 90%, 99%). 
The resulting optimal control problem is discretized via direct collocation and solved using interior point 
method, thereby simultaneously optimizing the mean trajectory, the control inputs, and the evolution of the 
covariance.  

The study introduces two complementary planning strategies that explicitly account for disturbances. 

1. Open-Loop Worst-Case Covariance Propagation. This method propagates the vehicle’s state 
covariance forward over a fixed prediction horizon at each discretization step. Constraints are 
tightened based on the uncertainty at the end point of the prediction horizon, without considering 
any feedback action during planning. Although conservative, this approach improves robustness 
by ensuring that the planned trajectory meets the constraints with the desired probability along the 
whole evolution. 

2. Closed-Loop Covariance-Aware Planning. This more sophisticated approach incorporates into 
the planning process a time-varying feedback controller based on a Linear Quadratic Regulator 
(LQR) [11]. It starts by computing a nominal minimum-time trajectory assuming deterministic 
dynamics. Then, an LQR controller is designed to stabilize that trajectory. Finally, the planning 
problem is re-solved with both the trajectory and controller gains as decision variables, ensuring 
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that the planned trajectory remains robust under closed-loop uncertainty propagation. This enables 
more realistic and less conservative behavior, as it exploits the stabilizing action of feedback. 

A comprehensive simulation study is conducted on a section of the Catalunya racing circuit. The analysis 
investigates the influence of key parameters, such as initial uncertainty and desired safety levels (Figure 
13), on the resulting trajectories. The impact of each robustified constraint (track limits, friction limits, or 
both) is examined to understand how different safety requirements shape the driving strategy, including 
acceleration and braking force profiles and steering inputs. A comparison between Open-Loop and Closed-
Loop strategies is shown in Figure 14. The highlighted regions illustrate how the vehicle’s safety envelope 
changes over time due to probabilistic constraint tightening. It is worth noting that the Open-Loop strategy 
gives more conservative results.

 

       

Figure 13: Dependence of planned trajectories on the 
required confidence level for Track Limits Constraints 
(TLC).  Higher values of γ^TLC correspond to higher 
confidence levels.

  

                         

Figure 14: Comparison between vehicle’s safety envelopes 
obtained via Open-Loop and Closed-Loop strategies with 

Track Limits Constraints (TLC).

 

In conclusion, this work provides a novel contribution to robust trajectory planning in motorsport by 
integrating probabilistic safety guarantees and feedback-aware planning. The results suggest that it is 
possible to achieve high-performance lap-time optimization without compromising safety, even in the 
presence of significant disturbances, and will be detailed in a forthcoming publication currently in 
preparation. 
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Conclusions 

Referring to the scheduled activities, the following topics had to addressed 

-Bifurcation Analysis 

-Taxonomy of bifurcations 

-Lyapunof function investigation 

-Path tracking for motorsport and road vehicles 

All of the topics have been tackled with original results.  

-Bifurcation Analysis: The drivers introduces bifurcations, we have understood the pattern of stable or 
unstable motion of any driver as a consequence of a disturb. Form now on engineers will have an additional 
way of interpreting telemetry. Trajectories in the phase plain will be always conditioned by the presence of 
a limit cycle.  

-Taxonomy of bifurcations: Due to the presence of limit cycles, a taxonomy has been performed easily, 
actually it coincides with the taxonomy of limit cycles 

-Lyapunof function investigation: We have shown that the problem of instability depends on the rotational 
kinetic energy that leaks from the translational kinetic energy by means of the inertia forces. 

-Path tracking for motorsport and road vehicles:  We have demonstrated that high-performance trajectory 
planning in motorsport can effectively integrate uncertainty, with or without a feedback controller, enabling 
minimum lap-time strategies that are both fast and probabilistically safe.  
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